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AN ENTROPY MAXIMUM PRINCIPLE AND INSTANTANEOUS FAILURE STATISTICS

I. Introduction

In this paper we use and extend some concepts in information theory in

the context of the statistical description of device failure. In particular,

we consider here failures that are instantaneous in the sense that a failure

does not depend on the history (e.g. length of operation) of the device [1].

Failure probabilities are characterized by an order parameter that corresponds

to the time of failure for the device under consideration. The corresponding

Shannon entropy [2] is defined over the full range of failure times. We term

the range, the epoch for failures. We consider an entropy maximum principle

(EMP) for the epoch entropy subject only to-minimal constraints necessary to

characterize failure statistics; namely, normalization of the probability

density integral, and the existence of a mean time to failure.

The resulting probability density that is consistent with the EMP subject

to minimal constraints is taken to be fundamental. However, it is observed

that the time scale on which the failure statistics are recorded does not

necessarily coincide with the time scale on which the probability density

taK..; its fundamental form. Time scale transformations are considered. The

maximum entropy density is considered to have the Shannon form independent of

the time scale used in its description. The resulting epoch entropy is itself

taken to be invariant. This principle of invariance of maximum epoch entropy

provides a relationship between time units on different time scales that is

useful e.g. in the consideration of the effect of size or mass scaling in

particular devices, and in the discussion of the behavior of parameters that

arise in accelerated testing. Given this framework and motivation, we now

turn to a more detailed description of our procedure.

Manuscript approved April 30, 19J4.
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I. Entropy Maximum Principle, Time Scale Transformations and

an Invariance Relation

In failure statistics, the statistical probability of failure of a device

is described in terms of an order parameter 8=6-6 ° where 8o is the value of 6

when failures are first possible. For the definition of Shannon entropy we

need a dimensionless probability density so we introduce a constant unit T

for the order parameter. Then if f(6)d/T 0 is the probability of the occur-

rence of a failure between 8 and O+dB, it follows that

.ff(e)dB/e = 1 (1)

where f(6) is a dimensionless probability density. To make sense as a failure

probability density, f(O) must have a first moment that corresponds to a mean

time to failure

<0> = fo8f(8)dO/T8  (2)

(i) and (2) represent the minimum set of conditions that arise in the descrip-

tion of instantaneous failure statistics.

We now define a dimensionless epoch Shannon entropy in terms of the

failure probability density as follows.

= -J'f(0)2nf(6)dO/T (3)

It should be noted that S is an implicit function of 0. We now require that

Se must be maximal. In particular, in the absence of knowledge about other

constraints, we maximize S8 subject only to the constraints represented by

(1) and (2). Introducing two Lagrange multipliers XI and X2 in the usual

way, we obtain from the variation of S8 that the maximum entropy occurs for

M (4)f (0) =exp[-(A I+X 2 6)](4

2



Consistency with (1) and (2) allows us to determine A1 and A2P

exp(-_X) = rC/<6>, X2 = <>'i (5)

Then the dimensionless probability density for maximum entropy, fM(0), has the

form

fM(O) = [T0/<8>]exp[-(O/<O>)] (6)

The maximum epoch entropy can itself be determined to be

SM = 1 + en<6> - AnT8  (7)

There are several important observations that should be made concerning

(6) and (7). First from (6) we see that it is the exponential distribution

that provides the maximum epoch entropy subject to the minimum constraints

necessary to characterize instantaneous failure statistics. In this sense,

the exponential distribution represents the fundamental distribution for

fMinstantaneous failure statistics. Second, although f (O)dO/T8 is independent

of the choice of time unit, fM(8 ) alone takes on a particularly simple form

when T0 is taken equal to <>, i.e. it is equal to unity at 6=0, and homo-

geneous in 6/<0>. Thus <6> is a natural time unit for the 8 time scale. A

similar simplification occurs for S which just becomes unity when T =<O>.

However for any choice of tE, S is an epoch integral whose value should be

independent of the time scale on which it is described. This condition of

invariance serves to place a stringent condition on the relationship between

T and the unit of time for the new time scale. This is probably obvious for

a linear transformation but we are interested here in a wider class of time

scale transformations. We are motivated here by the fact that there is no

reason to believe that the time scale on which failures are recorded coin-

cides with the time scale on which the failure statistics distribution appears

in its fundamental expor-ntial form.

3
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To provide a contextual framework, we now make some background observa-

tions about time scales. A time or order parameter is just a positive cumula-

tive function that increases monotonically from an origin. We have already

introduced the 6 time scale, its corresponding difference time scale 6=e-o

and unit of time T In a similar way we introduce another time scale t with

difference time scale t- OP and unit of time ct" From the context of

application, it is clear that we should align the respective origins 0 and E
0 0

since both represent the initial time when failures can occur. Thus if

0=6(t), 6(t=O) = 0 (8)

We specify further that dO/dt is positive and finite everywhere except pos-

sibly at isolated points.

We can now describe the failure statistics and maximum entropy in terms

II Mof t. Namely by direct transformation from f (8)dO/r0 to g (t)dt/tt, we find,

using (6)

g M(t) = exp{-[e(t)/<O>]} [tt/<>][d6(t)/dt (9)

The maximum epoch entropy can now be written in terms of an entropy density

defined in terms of g M(t), and an integral over time on the t-scale.

S = .fggM(t).engM(t) dt/t = 1 + £n<O>
SdO dO

- eXp['( T )d ) <6 (10)

Within the integral on the right hand side, dO/dt is expressed as a function

<e> and 0/<6>. We now use the requirement that SM is invariant when expressed

in terms of a transformed time scale, and (7) and (10) to obtain a general

invariance condition.

2n(T = fexp[-(6/<O>)]2n[dO/dt]dO/<O> (11)

We can investigate the ramifications of this relationship by considering a

specifiL time scale tranbformation.
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III. An Important Example and Parameter Renormalization

Given this general formulation, we can now turn to an important example

of time transformation that will provide a Weibull failure probability den-

sity. Namely, we Lasider

6(t) = UtO, de/dt = aptO-1  , a,0>O (12)

so that

dO/dt = (6/a)(0 I)/O (13)

The result of using Eq. (13) in Eq. (11) is

P n{ -t 1 1<6>/1/ = -(0 - )y (14)

tI

where y=0.577215. . . is the Euler constant. If we now choose T to coincide

with the "natural" unit on the 6-scale, namely <6>, we obtain the relationship

<6> = apoexp[ (1-)y]T (15)

It is convenient to define a new unit Tt'

t= pexp[ (1-0)y/PITt  (16)

so that

(0> O T t  (17)

Then using Eq. (9), we obtain for g M(t)dt/Tt,
gM (t)dt/t = exp[-(t/tt)Al 0(t/i t)P' dt/r t

9 M(t) dt/i t  (18)
tt

The function g(t)/rt is just the usual 3-parameter Weibull probability density

(recall Eo is implicit) that is so prevalent in the empirical description of
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the probability of instantaneous failure of a wide range of devices. The

scale parameter is just the unit of time Et, and the shape parameter is .

We are oftentimes presented with a Weibull distribution for instantaneous

failures rather than an exponential distribution. The point we have been

making is that such a Weibull distribution occurs on a time scale of measure-

ments which is not the fundamental time scale appropriate for the device of

interest as indicated by the EMP subject to minimal constraints. Thus param-

eter dependencies that enter into the unit of time on the measurement time

scale are therefore only apparent. The actual dependencies are those that

enter into the unit of the fundamental time scale. The two dependencies are

related by means of the invariance relation obtained from the specification

that the maximum epoch entropy is invariant under a time scale transformation.

For example, consider a plastic supporting component with strength

dependent on the molecular weight, M, of its chemical building blocks. On the

time scale of measurement, we assume the failure statistics to be Weibull. On

the fundamental scale, we take the mean time to failure, for specificity, to

have a simple monomial dependence on M.

<(> = kMb (19)

Then the Weibull scale unit, it, obeys

Tt Of M D / (20)

and therefore has a different power dependence controlled by the shape param-

eter P. If now we consider plastic components made with plastics with dif-

ferent values of M, they will typically have Weibull failure statistics with

different values of the shape parameter. Our prediction predicated on the

invariance of maximum epoch entropy when expressed in terms of the Weibull

distribution is that the t-dependence of Tt will vary in such a way that b is

6



the same for the components with different M. Similarly it may be possible to

change the Weibull shape parameter by changing the conditions of operation

e.g. by changing the environment. Then the prediction is that the power of M

that enters into jt changes with the shape parameter in such a way that b

again remains invariant.

A more &g..eral application occurs in the case of accelerated testing. We

consider then the device of interest to be subjected to a constant stress

which, for specificity, we take to be the absolute temperature T. For

simplicity, we assume that the origin of time for failures is not modified by

a change of temperature. We now assume that the temperature dependence of t

unit of time is described by an Arrhenius model so that on the 6-scale,

<0> = <00,> exp(A/T) 11

Here <,,> is the mean time to failure at (nominally) infinite temperature and

A is an Arrhenius constant with dimensions of temperature. We again take the

distribution on the time scale of measurement to be Weibull. Then if under

temperature stress, we find that the statistics are still Weibull with

unchanged shape parameter, we can apply the Arrhenius model to the Weibull

time unit.

= (it) exp(A-/T) (22)

Here A* is an effective Arrhenius constant. It is clear that for the invari-

ance condition to hold, A* must be related to the actual Arrhenius constant A

by the renormalization relation

A--- = A/ (23)

Despite its apparent simplicity, (23) provides an important insight into

the validity of stress testing. If the shape parameter 1 is less than unity,

the apparent A* is larger than A and one is led to believe the device is less

7



durable than it actually is. The bad news is that if 0>1, the device is

actually less durable than might be judged from the stress test on the time

scale of measurement. The important point we want to make is that conclusions

concerning accelerated life tests depend in an essential way on the details of

the probability density, and not just on the properties of the measured mean

time to failure.

In summary, we have formulated for instantaneous failure statistics, an

EMP for the entropy over the full epoch of failures subject to the minimal

constraints that the probability is normalized and that there exists a mean

time to failure. This EMP led to an exponential distribution for the proba-

bility density. The exponential distribution thus can be viewed as the funda-

mental distribution for instantaneous failure statistics. We then considered

the family of probability densities that can be obtained by time scale trans-

formations. The condition that the maximum entropy over the epoch remains

invariant when evaluated in terms of a transformed probability density led to

a relation between a unit of time on the transformed time scale and the one on

the original scale. The example involving a time scale transformation that

leads to a Weibull probability density was discussed. In particular, it was

pointed out that the invariance condition imposes important constraints on

parameters and Arrhenius constants from accelerated testing, that may occur in

the description of the time scale units. Other time scale transformations can

be treated in a similar way [3]. We intend to address the application of an

EMP, time scale transformations, and the invariance of maximum epoch entropy

to the case of cumulative damage failure statistics at a later time.
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